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Introduction
The reconstruction of bone defects resulting from trauma, 
inflammatory diseases, and tumors holds significant 
importance1 due to the potential consequences of leaving 
these lesions untreated, which may result in the formation 
of connective tissue.2 Consequently, addressing bone 
defects is crucial to any clinical procedure.3 

Despite having defined the ideal characteristics for a 
bone graft material over three decades ago, no material 
has been able to encompass all of these characteristics to 
date.4 The use of autogenous bone is widely regarded as the 
gold standard.5 In addition to proper histocompatibility, 
autografts do not elicit the immune response and possess 
essential properties for successful regeneration, including 
osteogenesis, osteoinduction, and osteoconduction.6 
However, the use of autogenous bone presents challenges 
such as prolonged surgical time, potential complications 
in the donor site, and postoperative pain and discomfort. 
In addition, the potential for infection transmission and 
immune system stimulation associated with allografts 
has prompted the exploration of alternative biomaterials, 
such as xenografts and synthetic materials, to treat 
bone defects.6-8 

Numerous studies have demonstrated that using 

biological sources to prepare hydroxyapatite is a valuable 
approach for producing inexpensive and effective 
xenografts for bone regeneration.9 The key advantage of 
xenografts is their unrestricted availability. In addition, 
they possess biocompatibility, a porous structure, 
reasonable production costs, and mechanical strength.10

Xenografts can be obtained from different species,11 
with commonly available commercial xenograft 
products typically sourced from bovine origins that may 
raise ethical concerns due to the sacrifice of involved 
animals.12 The antler, unique to mammals, is the sole 
body part capable of complete regeneration and exhibits a 
remarkable growth rate of 2 to 4 cm per day.13 The physical 
and structural characteristics of antlers have garnered 
significant interest.14 

The biological response to transplant materials may be 
influenced by their physical attributes, including porosity, 
particle size, and shape.15 Therefore, this study aimed 
to investigate and compare the physical and structural 
characteristics of two bone substitutes derived from antler 
and bovine femur sources.

Methods
This in vitro study was carried out using particles with 
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ARTICLE INFO Abstract
Background. The use of bone graft materials has significantly increased. Given the inherent 
variations in structure and functionality between different grafting materials, this evaluated and 
compared the physical attributes of antler and bovine femur bone substitutes.
Methods. In the present in vitro investigation, the surface morphological architecture of the 
two bone substitutes with different origins was assessed through scanning electron microscopy. 
Furthermore, the Brunauer–Emmett–Teller (BET) technique was employed to measure the 
porosity, specific surface area (SSA), and pore morphology.
Results. Scanning electron microscopy observations indicated that the surface of the bovine 
particles appeared smoother, while the antler particles exhibited a rougher surface texture. The 
BET analysis revealed that both samples exhibited identical pore morphology. The SSA was 
15.974 m2/g in the antler particles compared with 18.404 m2/g in the bovine sample. The total 
porosity volume in the antler and bovine femur bone substitutes were 0.2172 cm3/g and 0.2918 
cm3/g, respectively. Additionally, the antler particles had a porosity percentage of 40%, whereas 
the bovine femur bone substitute showed a porosity percentage of 43.5%. 
Conclusion. Based on the results of this study, it seems that the two samples of bone grafting 
materials have comparable physical structures.
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bovine femur bone origin (Bone + B®, Novateb Pars Co., 
Iran) and a bone substitute derived from Cervus elaphus 
Maral’s antler (Maral Pajoohesh Shams Co., Iran).
The morphological characteristics were assessed using a 
scanning electron microscope (SEM) with an operating 
voltage of 25.0 kV (TESCAN VEGA 3, TSCAN, Brno, 
Czech Republic). Porosity and specific surface area (SSA) 
were determined through Brunauer-Emmett-Teller (BET) 
analysis using 0.5 grams of each bone material. The bone 
substitutes were pretreated and degassed by vacuuming 
for 2 hours (FlowPrep 060, Micromeritics, GA, USA), 
with liquid nitrogen as the adsorptive. The saturated vapor 
pressure was set at 88 kilo Pascal, and the temperature 
was set at 77 K (TriStar II Plus, Micromeritics, GA, USA). 
SSA was expressed as square meters per gram of mineral 
(m2/g). The shape of the pores was determined through 
an adsorption-desorption diagram, while the porosity 
volume and mean pore diameter were measured using the 
BET equation. Both assays were conducted and reported 
by an individual blinded to the characteristics of the 
materials.

Results
The morphological analysis revealed that the antler-
derived bone substitute exhibited more rounded angles 
than the bovine particles. The bovine grafting material 
particles displayed sharper and more fragmented edges 
(Figure 1). The particle size of the antler particles 
encompassed a wider range than the material derived 
from bovine femur bone (Figure 2). Furthermore, greater 
variation in the shape and size of particles was observed 
in the antler particles. The surface of the particles derived 
from bovine femur bone was smoother, while the antler 
particles exhibited more surface roughness. Both materials 

displayed holes ranging approximately 50‒300 µm in size. 
Layered structures were observed in both samples, with 
the grafting material derived from bovine femur bone 
exhibiting more pronounced visibility. Small nodules were 
present in both samples, but the antler sample exhibited 
a significantly higher density and larger size of these 
nodules. The majority of particles in both samples fell 
within a range of 300‒600 µm, with no particles smaller 
than 150 µm in either sample. Only the sample derived 
from antler origin contained particles with dimensions 
ranging from 1000 to 2000 µm.

The pore morphology in both bone substitutes exhibited 
a slit-like structure. Table 1 presents the results of the BET 
analysis. The distribution of pores by diameter is depicted 
in the Barrett-Joyner-Halenda (BJH) diagram (Figure 3).

Discussion
SEM revealed that the antler particles had more diverse 
sizes, which might be attributed to differences in their 
respective preparation methods. The majority of large 
particles in both samples exhibited holes ranging in size 
from 50 to 300 µm, which is consistent with the particle 
size of other xenografts. It has been demonstrated that 
cavities larger than 100 µm are crucial for the formation 
of blood vessels.16 A wide range of particle sizes might 
impede the angiogenesis process, as smaller particles 
tend to fill the interstitial spaces between larger particles 
and slow down this process.17 Furthermore, the antler 
particles had rougher surfaces. Previous research has 
demonstrated that smaller particles and a rougher 
surface of grafting materials elicit a stronger immune 
response, characterized by increased production of 
TNF-a and IL-6.18 This immune response is associated 
with the recruitment of cells to the regeneration site 

Figure 1. Surface morphology of bone substitutes: Antler (a-e) and Bovine (f-j). Magnification: a and f ( × 50), b and g ( × 200), c and h ( × 500), d and h ( × 2,000), 
e and j ( × 10000)

Table 1. Porosity and specific surface area

Type of bone substitute Porosity (%) Density (g/cm3) Specific surface area (m2/g) Total porosity volume (cm3/g) Mean hole diameter (nm)

Antler 040 0.55 15.974 0.2172 54.377

Bovine 43.5 0.67 18.404 0.2918 63.41
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and the replacement of the graft material with new 
bone. Additionally, a rougher surface promotes better 
adhesion of osteoblasts, a stronger connection between 
the host bone and the graft material, and improved 
bone regeneration.19 The expression of osteoprotegerin, 
a receptor related to osteoclastogenesis, is likely to be 
higher in the antler particles due to surface roughness.20,21 
The bovine particles had sharper angles, which might 
potentially result in Schneiderian membrane perforation 
during sinus augmentation procedures.

Porosity in grafting substitutes allows the infiltration 
of cells into the material. The presence of these pores 
helps nourish and dispose of osteoblasts’ waste materials. 
The minimum size of porosity in bone graft materials is 
typically around 100 µm. However, the optimal size for 
porosity among materials is > 300 µm to ensure proper 
blood supply.22-24 Another crucial factor to consider is 
the surface characteristics of the graft material, as they 
significantly influence angiogenesis, the interconnection 
of bone cells, and their migration and proliferation.4 
Furthermore, the impact of the origin of xenograft on its 
properties has been demonstrated.25

Different techniques are employed to assess the porosity 
and specific surface of materials. The measurement of 
porosity with a size range of 1‒100 µm is accomplished 
using the mercury-assisted porosity measurement. On the 
other hand, the BET procedure is a precise method for 
evaluating pores within a range of 1‒100 nm. Alternatively, 
low-angle x-ray and neutron scattering approaches can be 
used to evaluate pores ranging from 0.4 to 2 nm.26 Given 
the necessity to examine the porosity of the samples at 
dimensions below 100 nm, the gas absorption method and 
BET theory were employed in the present study.

The antler sample exhibited a lower percentage of 
porosity (40%) compared to the bovine bone substitute 
(43.5%). Notably, both materials demonstrated a lower 
porosity percentage than Bio-Oss (70.5%).25 In Zhang’s 
investigation, the porosity of the prepared xenograft from 
deer antler was 75%, which surpasses the porosity of the 
test material in this study.27 It is important to acknowledge 
that the animal’s preparation procedure, breed, and 
age may influence the porosity level. Furthermore, it is 
imperative to consider that the testing protocol might 
impact the outcomes.

The BET analysis revealed that the bovine bone 
substitute micropores were, on average, 16.6% larger than 
those of the antler particles. These micropores in both 
materials are slightly larger and comparable to that of 
Bio-Oss (30 nm).28 Examining the pore size distribution, 
the antler sample exhibited greater dispersion, with a 
higher percentage of pores under 10 nm. The SSA in 
both samples was much higher than Puros (2 m2/g) and 
Creos allografts (0.025 m2/g).29 The sample obtained 
from bovine bone demonstrated a 34% increase in pore 
volume and a SSA 15.2% greater per gram compared to 
the antler sample. Consequently, due to its greater SSA, 
higher porosity percentage, and wider pore size, it appears 
that the bovine sample will undergo resorption at a faster 
rate. Bone graft materials that exhibit slower degradation Figure 2. Particle size distribution of the bone substitutes

Figure 3. BJH diagram. Antler (left) and bovine (right)
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are better suited for alveolar crest reconstruction, albeit 
necessitating a longer duration for repair.30

The pores in both samples exhibited a continuous 
transverse extension within a single particle, displaying 
a slit-like configuration. This particular pore structure 
has been demonstrated to facilitate enhanced molecular 
and fluid mobility. Consequently, it appears that the 
morphology of the pores in both materials may contribute 
to intercellular signaling.31 

Further research should be conducted to compare this 
particular bone substitute with other grafting materials 
currently available on the market or other bone materials 
with different processing procedures. In addition, it is 
recommended to assess and compare the impact of the 
physical attributes of these two bone substitutes in animal 
studies, specifically in terms of osteopromotion levels, 
material absorption rates, replacement with new bone, 
and angiogenesis.

Conclusion
Based on the results of this study, it seems that the two 
samples of bone substitute originating from antler and 
bovine femur bone have similar physical structures. Both 
materials’ porosity, SSA, and density were almost identical. 
The bovine material displayed a limited range of particle 
sizes. On the other hand, the antler bone substitute 
particles exhibited a rougher surface texture that might 
enhance osteoblast adhesion.
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