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Abstract
It seems quite challenging in tissue engineering to synthesize a base material with a range of 
essential activities, including biocompatibility, nontoxicity, and antimicrobial activities. Various 
types of materials are synthesized to solve the problem. This study aimed to provide the latest 
relevant information for practitioners about antibacterial scaffolds in dental tissue engineering. 
The PubMed search engine was used to review the relevant studies with a combination of 
the following terms as search queries: tissue engineering, scaffolds, antimicrobial, dentistry, 
dental stem cells, and oral diseases. It is noteworthy to state that only the terms related to 
tissue engineering in dentistry were considered. The antimicrobial scaffolds support the local 
tissue regeneration and prevent adverse inflammatory reactions; however, not all scaffolds have 
such positive characteristics. To resolve this potential defect, different antimicrobial agents are 
used during the synthesis process. Innovative methods in guided tissue engineering are actively 
working towards new ways to control oral and periodontal diseases. 
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Introduction
The science of tissue engineering has excellent potential for 
tooth regeneration. There are three essential elements in 
tissue engineering: scaffolds, stem cells (SCs), and growth 
factors (GFs).1,2 Scaffolds and growth factor carriers are 
important players in the regeneration of damaged tissues 
or teeth.3

Tissue engineering requires different biomaterials with 
distinct properties than the ones used in engineering other 
tissues. Dental tissue engineering deals with regenerating 
damaged or lost tooth components, including enamel, 
dentin, and pulp. Postnatal investigation of the tooth 
development process is a crucial step for identifying the 
factors affecting the regeneration of dental tissues.4,5 As 
a complex tissue, a tooth consists of hard tissues, dentin, 
and enamel and is connected to bone through ligaments. 
Successive and mutual interactions between epithelial-
mesenchymal cells shape teeth. While the epithelial cells 
have a prominent role in enamel formation, mesenchymal 
cells are responsible for producing differentiated cells vital 
for the formation of odontoblasts, pulp, and periodontal 
ligament.6,7

Tissue engineering makes use of a wide range of different 
materials: hydroxyapatite, various composites based 
on bioactive glass, and synthetic/natural polymers. In 
addition, it is also possible to use 3D printing technology 
for scaffold production.8 None of the options mentioned 

above for bone and dental tissue engineering match all the 
characteristics of bone graft substitutes.9 Another instance 
would be electrospinning, which is a practical technique 
since its versatility allows for the synthesis of micro- and 
nano-fibers. Notably, one favorable characteristic of these 
nano-fibers is their optimum flexibility in the fabrication 
process, but low hydrophilicity and having no surface 
cell-recognition sites lead to sub-optimal performance 
of synthetic materials. Conversely, natural fibers have 
optimal biocompatibility performance, but mechanical 
performance is their Achilles heel. The final comprehensive 
solution to meet both mechanical and biocompatible 
(bioactive surface) requirements is to develop composite 
fibrous scaffolds, in which the synthetic polymers serve 
as the backbone and the natural polymers provide cellular 
attachment.10

The main challenge after implementing scaffolds is to 
formulate strategies to prevent chronic infection after 
implantation,11 which is a possible complication expected 
in almost every surgical procedure. The culturing and 
implantation are the stages in which contamination is 
more likely. To combat contamination, antibiotics are an 
obvious solution, as they can effectively prevent bacterial 
infection after artificial bone transplantation. Typically, 
antibiotics should be prescribed with care since misuse 
leads to an adverse phenomenon: drug resistance.12 As 
a result, more effective but safer alternatives must be 
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developed, and antibacterial scaffolds can be the ideal 
alternative. Standard antimicrobial scaffolds support local 
tissue regeneration and prevent adverse inflammatory 
reactions. Reportedly, in the synthesis of antibacterial 
scaffolds, different particles with optimal antibacterial 
and minimal toxic properties, such as silver nanoparticles 
(Ag), are used.13 This paper provides the latest information 
for practitioners about the antibacterial scaffolds in dental 
tissue engineering.

Antimicrobial agents in dental tissue engineering
The bacterial infections of the dental and periodontal 
defects should be managed and eradicated.14 Many 
antibiotics are embedded in polymer membranes, 
including but not restricted to tetracycline hydrochloride, 
metronidazole, and amoxicillin.15 Dayaghi et al16 compared 
the antimicrobial activity of Mg-Zn scaffolds containing 
a high tetracycline concentration and reported that this 
new scaffold has significant activity against Staphylococcus 
aureus and Escherichia coli compared to the reference 
scaffold mentioned above. Because of the significant 
antibacterial activity, if the tetracycline percentage is 
between 1% and 5%, it is a potential choice for bone 
healing applications. However, due to ever-increasing 
antibiotic resistance, different alternative substances have 
also been proposed as antimicrobial agents in dental tissue 
engineering, including metal and metal oxides, medicinal 
plants (herbal medicines), polymers, and novel drug 
delivery systems (nano-biomaterials).

Metals and metal oxides
The macromolecular construction suggests a tool to 
improve antimicrobial activity as numerous antimicrobial 
moieties, such as metals and metal oxides, can be 
conjugated to the scaffold. New studies and tests on gram-
positive and gram-negative bacteria have demonstrated 
that metal-based antimicrobial macromolecules can 
effectively prevent and treat infections due to resistant 
strains.17 

Silver (Ag)
Silver nanoparticles have attracted considerable attention 
due to their antibacterial effects on gram-positive and 
gram-negative bacteria, particularly multidrug-resistant 
strains, and their low toxic effects.17 Xing et al18 compared 
the antimicrobial activity of metallic silver particle-
loaded poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) 
(PHBV) scaffolds and poly-(3-hydroxybutyrate-co-3-
hydroxyvalerate) and reported the significant antibacterial 
activity of Ag-loaded scaffold against S. aureus and 
Klebsiella pneumonia compared to the free PHBV scaffold. 
Numerous studies have incorporated Ag into scaffolds for 
sustained release and antibacterial activity. Tests on the 
antimicrobial activity of Ag scaffolds against S. aureus and 
E. coli showed that the minimum inhibitory concentration 
(MIC) and minimum bactericidal concentration (MBC) 
values for each strain were 32.0 and 32.0 μg/mL for S. 

aureus, and 64.0 and 85.3 μg/mL for E. coli. The control 
scaffold (without Ag) did not exhibit any antimicrobial 
effects.19 

TiO2
In another study, TiO2-loaded scaffolds exhibited 
significant antibacterial activity. TiO2 might cause 
oxidative and mechanical damage to bacteria through 
contact activities and the production of reactive oxygen 
species (ROS).20 ROS exerts oxidative stress on bacteria 
while the concentration is higher than the bacterial 
antioxidant defense system’s inhibitory potential, thereby 
destroying the organization and action of bacteria.21 In 
addition, the contact between the bacterial cell wall and 
TiO2 leads to mechanical stresses and distortion of the 
bacterial cell membrane.22 

Medicinal plants (herbal medicines)
Aloe vera 
According to reports, the aloe vera plant, its bioactive 
components, and glucomannan (known as acemannan) 
have antiviral and bactericidal effects.23 It has been 
reported that these plants exhibit potent anti-
inflammatory, antioxidant, and antibacterial activities 
due to their anthraquinones (e.g., barbaloin, emodin, and 
anthranol) and phenolic compounds.24 In addition to the 
antimicrobial activity of aloe vera, positive interactions 
with dental cells make it an appropriate candidate for 
periodontal therapy. It has been reported that aloe vera 
has antimicrobial activity against the primary bacteria 
associated with periodontitis. The gel of aloe vera has 
been shown to prevent the growth of both gram-negative 
and gram-positive bacteria compared to conventional 
antibiotics, such as vancomycin, methicillin, bacitracin, 
and erythromycin.25 

Manuka honey 
Manuka honey (MH) contains a unique Manuka factor, 
providing a supplementary antibacterial agent. The effect of 
MH-containing scaffold (hydrogel type) was investigated 
on bacterial elimination, adhesion, and cellular adhesion. 
The results showed higher antimicrobial activity for MH-
containing scaffolds compared to conventional scaffolds.26

Berberine
Berberine acts as a natural antimicrobial agent and is active 
against many different bacteria, without toxic effects on 
mammalian cells. Huang et al27 prepared berberine-loaded 
scaffolds that showed more than 150 hours of berberine 
release, with potent antibacterial activity against S. aureus. 

Curcumin
Numerous reports demonstrated the antibacterial, 
antiviral, antifungal, and antimalarial activities of 
curcumin.28, 29 Based on recent studies, curcumin inhibits 
the growth and proliferation of E. coli at a concentration 
of 8 mg/mL.30 Besides, curcumin can prevent the growth 
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of different methicillin-resistant S. aureus strains at 
concentrations of 125-250 mg/mL.31 Previous studies have 
also shown that local use of curcumin-containing scaffolds 
decreases gingival inflammation.31-33 Moreover, curcumin 
can efficiently inhibit the activation of inflammatory 
mediators and positively impact periodontal diseases.31,32

Polymers
Chitosan 
Chitosan is a well-known scaffold in different tissue 
engineering fields. It has non-toxic degradation products 
with little effect due to its low hydrophilicity and low cell 
compatibility. It also has excellent antimicrobial activity 
against different bacteria. Besides, chitosan monomers 
support the regeneration of dental pulp wounds and are 
useful scaffolds for dental pulp cells.34, 35 

Novel drug delivery systems (nanobiomaterials)
Extensive data have shown that antibiotic pastes and 
chemical irritants might influence dental stem cells’ 
viability and function.36 In this case, a biocompatible 
intracanal drug delivery device based on nano-fibers 
is suggested to establish a bacteria-free atmosphere 
conducive to tissue restoration.37 In summary, a polymer-
loaded solution must be formulated with the selected 
antibiotic(s) at the desired concentration.38 After this, 
antibiotic eluting nano-fibers are developed by modifying 
the electrospinning variables (e.g., flow rate, power of 
the field, etc.). These therapeutic nano-fibers could be 
conveniently inserted into the necrotic dental root canal 
system as a three-dimensional (3D) tubular structure, 
with excellent clinical potential since it will ensure that 
the antibiotics are distributed on microbial biofilms.37 The 
contaminated dentin subjected to triple-antibiotic-eluting 
nano-fibers showed remarkable bacterial mortality based 
on data from confocal laser scanning microscopy.38

The use of antibacterial agent-releasing scaffolds in 
dental tissue engineering
Endodontics and pediatric dentistry 
The clinical treatment of premature (open apex) teeth with 
diseased pulp induced by trauma or bacterial infection is 
a concern for endodontists and pediatric dentists.39 The 
favorable treatment has, over the years, been compatible 
with the concepts of apexification, i.e., calcium hydroxide 
disinfection accompanied by root canal obturation 
using gutta-percha. However, fresh dental pulp recovery 
opportunities due to the evoked bleeding (EB) were raised 
during the past decade.40 However, the patient-dependent 
reconstruction process’s outcome is still unattainable and 
somewhat uncertain, despite the cases described in the 
clinical and histological analyses.40 Several factors were 
assumed to account for the unspecific success, including 
but not restricted to using rather cytotoxic antibiotic 
pastes.36 Several studies3, 3–20 have reported the application 
and transmission prospects of 3D nano-fibers appropriate 
for antibiotic removal as a local technique for interior 

drug delivery that combined with injectable scaffolds, 
enriched or not with stem cells and growth factors (GFs), 
can increase the likelihood of the restoration of the human 
dental pulp.36

Periodontitis 
Periodontitis is one of the most aggressive recurrent 
oral inflammatory disorders and damages soft and 
hard tissue consistency, resulting in tooth loss in severe 
tissue destruction cases.41 To restore the periodontal 
system’s architecture and function, in principle, targeted 
procedures of tissue reconstruction are used. In summary, 
an occlusive biocompatible polymer-based membrane is 
effectively used as a barrier to prevent the movement of 
epithelial and connective tissue cells to the regenerating 
site. Thus, smaller migrating ancestral cells in the residual 
periodontal ligament (PDL) can increase the root region’s 
porosity such that they can be differentiated into new 
periodontal tissues.42 The last decade has witnessed 
substantial improvements in the production of membranes 
with antimicrobial benefits with varying clinical success 
rates using this strategy. The works reported in the 
literature have included antimicrobials and inorganic 
particles (e.g., calcium phosphates) and biomolecules 
(e.g., growth factors) in the fabrication of membranes with 
therapeutic functions.43 More recently, combining known 
materials and biomolecules with advanced technologies 
has enabled the management of significant periodontal 
disorders.44 3D printing has also been used for the first 
patient-specific growth factor adjusted scaffold (rhPDGF-
BB).45

In recent years, novel treatments for dental pulp 
restoration, including the EB procedure, have been 
promising to improve treatment outcomes. During EB, 
after thorough root canal disinfection, periapical tissue 
laceration is purposely undertaken to induce bleeding 
and establish a fibrin-based scaffold to interfere with 
innate stem cells and growth factors. To disinfect, the 
EB procedure has ideally used a triple (ciprofloxacin/
CIP, metronidazole/MET, and minocycline/MINO) or 
double (minocycline-free) antimicrobial ingredient made 
of very concentrated antibiotic pastes. Nevertheless, 
no therapeutic dosage was found to improve antibiotic 
mixture-specific antimicrobial activity, decreasing the 
host tissue and cell toxicity. Regardless of EB’s promising 
results in treating immature permanent teeth with 
necrotic pulps,46 one case study showed pulp-like tissue 
development.47 Evidently, most histological observations 
suggest that periapical tissue comprising bone-like hard 
tissue and cement-like content has been invaginated, 
contributing to the thickening of root canal walls.48 While 
the EB approach was suggested for treating immature 
teeth, a new survey showed that undifferentiated MSCs 
had reached the pulpal area of mature teeth with apical 
defects from the apical area.49 
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Conclusion
New methods in dental tissue engineering have been 
employed towards new ways of managing oral and 
periodontal diseases. Antimicrobial agent-containing 
scaffolds in dental tissue engineering not only can support 
the local tissue regeneration but also can prevent adverse 
local inflammatory processes. Despite the currently 
available studies, more in vitro and in vivo studies are 
necessary in this field.
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