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Abstract 
Background. The use of bone graft materials has significantly increased. Given the inherent 
variations in structure and functionality between different grafting materials, this evaluated and 
compared the physical attributes of antler and bovine femur bone substitutes. 
Methods. In the present in vitro investigation, the surface morphological architecture of the 
two bone substitutes with different origins was assessed through scanning electron microscopy. 
Furthermore, the Brunauer–Emmett–Teller technique was employed to measure the porosity, 
specific surface area, and pore morphology. 
Results. Scanning electron microscopy observations indicated that the surface of the bovine 
particles appeared smoother, while the antler particles exhibited a rougher surface texture. The 
Brunauer-Emmett-Teller analysis revealed that both samples exhibited identical pore 
morphology. The specific surface area was 15.974 m2/g in the antler particles compared with 
18.404 m2/g in the bovine sample. The total porosity volume in the antler and bovine femur 
bone substitutes were 0.2172 cm3/g and 0.2918 cm3/g, respectively. Additionally, the antler 
particles had a porosity percentage of 40%, whereas the bovine femur bone substitute showed 
a porosity percentage of 43.5%.  
Conclusion. Based on the results of this study, it seems that the two samples of bone grafting 
materials have comparable physical structures. 
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Introduction 
The reconstruction of bone defects resulting from trauma, inflammatory diseases, and tumors 
holds significant importance1 due to the potential consequences of leaving these lesions 
untreated, which may result in the formation of connective tissue.2 Consequently, addressing 
bone defects is crucial to any clinical procedure.3  
Despite having defined the ideal characteristics for a bone graft material over three decades 
ago, no material has been able to encompass all of these characteristics to date.4 The use of 
autogenous bone is widely regarded as the gold standard.5 In addition to proper 
histocompatibility, autografts do not elicit the immune response and possess essential 
properties for successful regeneration, including osteogenesis, osteoinduction, and 
osteoconduction.6 However, the use of autogenous bone presents challenges such as prolonged 
surgical time, potential complications in the donor site, and postoperative pain and discomfort. 
In addition, the potential for infection transmission and immune system stimulation associated 
with allografts has prompted the exploration of alternative biomaterials, such as xenografts and 
synthetic materials, to treat bone defects.6-8  
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Numerous studies have demonstrated that using biological sources to prepare hydroxyapatite 
is a valuable approach for producing inexpensive and effective xenografts for bone 
regeneration.9 The key advantage of xenografts is their unrestricted availability. In addition, 
they possess biocompatibility, a porous structure, reasonable production costs, and mechanical 
strength.10 
Xenografts can be obtained from different species,11 with commonly available commercial 
xenograft products typically sourced from bovine origins that may raise ethical concerns due 
to the sacrifice of involved animals.12 The antler, unique to mammals, is the sole body part 
capable of complete regeneration and exhibits a remarkable growth rate of 2 to 4 cm per day.13 
The physical and structural characteristics of antlers have garnered significant interest.14  
The biological response to transplant materials may be influenced by their physical attributes, 
including porosity, particle size, and shape.15 Therefore, this study aimed to investigate and 
compare the physical and structural characteristics of two bone substitutes derived from antler 
and bovine femur sources. 
 
Methods 
This in vitro study was carried out using particles with bovine femur bone origin (Bone+B®, 
Novateb Pars Co., Iran) and a bone substitute derived from Cervus elaphus Maral’s antler 
(Maral Pajoohesh Shams Co., Iran). 
The morphological characteristics were assessed using a scanning electron microscope (SEM) 
with an operating voltage of 25.0 kV (TESCAN VEGA 3, TSCAN, Brno, Czech Republic). 
Porosity and specific surface area (SSA) were determined through Brunauer-Emmett-Teller 
(BET) analysis using 0.5 grams of each bone material. The bone substitutes were pretreated 
and degassed by vacuuming for 2 hours (FlowPrep 060, Micromeritics, GA, USA), with liquid 
nitrogen as the adsorptive. The saturated vapor pressure was set at 88 kilo Pascal, and the 
temperature was set at 77 Kelvin (TriStar II Plus, Micromeritics, GA, USA). SSA was 
expressed as square meters per gram of mineral (m2/g). The shape of the pores was determined 
through an adsorption-desorption diagram, while the porosity volume and mean pore diameter 
were measured using the BET equation. Both assays were conducted and reported by an 
individual blinded to the characteristics of the materials. 
 
Results 
The morphological analysis revealed that the antler-derived bone substitute exhibited more 
rounded angles than the bovine particles. The bovine grafting material particles displayed 
sharper and more fragmented edges (Figure 1). The particle size of the antler particles 
encompassed a wider range than the material derived from bovine femur bone (Figure 2). 
Furthermore, greater variation in the shape and size of particles was observed in the antler 
particles. The surface of the particles derived from bovine femur bone was smoother, while the 
antler particles exhibited more surface roughness. Both materials displayed holes ranging 
approximately 50‒300 µm in size. Layered structures were observed in both samples, with the 
grafting material derived from bovine femur bone exhibiting more pronounced visibility. Small 
nodules were present in both samples, but the antler sample exhibited a significantly higher 
density and larger size of these nodules. The majority of particles in both samples fell within a 
range of 300‒600 µm, with no particles smaller than 150 µm in either sample. Only the sample 
derived from antler origin contained particles with dimensions ranging from 1000 to 2000 µm. 
The pore morphology in both bone substitutes exhibited a slit-like structure. Table 1 presents 
the results of the BET analysis. The distribution of pores by diameter is depicted in the Barrett-
Joyner-Halenda (BJH) diagram (Figure 3). 
 
 



Discussion 
Scanning electron microscopy (SEM) revealed that the antler particles had more diverse sizes, 
which might be attributed to differences in their respective preparation methods. The majority 
of large particles in both samples exhibited holes ranging in size from 50 to 300 µm, which is 
consistent with the particle size of other xenografts. It has been demonstrated that cavities 
larger than 100 µm are crucial for the formation of blood vessels.16 A wide range of particle 
sizes might impede the angiogenesis process, as smaller particles tend to fill the interstitial 
spaces between larger particles and slow down this process.17 Furthermore, the antler particles 
had rougher surfaces. Previous research has demonstrated that smaller particles and a rougher 
surface of grafting materials elicit a stronger immune response, characterized by increased 
production of TNF-a and IL-6.18 This immune response is associated with the recruitment of 
cells to the regeneration site and the replacement of the graft material with new bone. 
Additionally, a rougher surface promotes better adhesion of osteoblasts, a stronger connection 
between the host bone and the graft material, and improved bone regeneration.19 The 
expression of osteoprotegerin, a receptor related to osteoclastogenesis, is likely to be higher in 
the antler particles due to surface roughness.20,21 The bovine particles had sharper angles, which 
might potentially result in Schneiderian membrane perforation during sinus augmentation 
procedures. 
Porosity in grafting substitutes allows the infiltration of cells into the material. The presence of 
these pores helps nourish and dispose of osteoblasts’ waste materials. The minimum size of 
porosity in bone graft materials is typically around 100 µm. However, the optimal size for 
porosity among materials is >300 µm to ensure proper blood supply.22-24 Another crucial factor 
to consider is the surface characteristics of the graft material, as they significantly influence 
angiogenesis, the interconnection of bone cells, and their migration and proliferation.4 
Furthermore, the impact of the origin of xenograft on its properties has been demonstrated.25 
Different techniques are employed to assess the porosity and specific surface of materials. The 
measurement of porosity with a size range of 1‒100 µm is accomplished using the mercury-
assisted porosity measurement. On the other hand, the BET procedure is a precise method for 
evaluating pores within a range of 1‒100 nm. Alternatively, low-angle x-ray and neutron 
scattering approaches can be used to evaluate pores ranging from 0.4 to 2 nm.26 Given the 
necessity to examine the porosity of the samples at dimensions below 100 nm, the gas 
absorption method and BET theory were employed in the present study. 
The antler sample exhibited a lower percentage of porosity (40%) compared to the bovine bone 
substitute (43.5%). Notably, both materials demonstrated a lower porosity percentage than Bio-
Oss (70.5%).25 In Zhang’s investigation, the porosity of the prepared xenograft from deer antler 
was 75%, which surpasses the porosity of the test material in this study.27 It is important to 
acknowledge that the animal’s preparation procedure, breed, and age may influence the 
porosity level. Furthermore, it is imperative to consider that the testing protocol might impact 
the outcomes. 
The BET analysis revealed that the bovine bone substitute micropores were, on average, 16.6% 
larger than those of the antler particles. These micropores in both materials are slightly larger 
and comparable to that of Bio-Oss (30 nm).28 Examining the pore size distribution, the antler 
sample exhibited greater dispersion, with a higher percentage of pores under 10 nm. The 
specific surface area in both samples was much higher than Puros (2 m2/g) and Creos allografts 
(0.025 m2/g).29 The sample obtained from bovine bone demonstrated a 34% increase in pore 
volume and a specific surface area 15.2% greater per gram compared to the antler sample. 
Consequently, due to its greater specific surface area, higher porosity percentage, and wider 
pore size, it appears that the bovine sample will undergo resorption at a faster rate. Bone graft 
materials that exhibit slower degradation are better suited for alveolar crest reconstruction, 
albeit necessitating a longer duration for repair.30 



The pores in both samples exhibited a continuous transverse extension within a single particle, 
displaying a slit-like configuration. This particular pore structure has been demonstrated to 
facilitate enhanced molecular and fluid mobility. Consequently, it appears that the morphology 
of the pores in both materials may contribute to intercellular signaling.31  
Further research should be conducted to compare this particular bone substitute with other 
grafting materials currently available on the market or other bone materials with different 
processing procedures. In addition, it is recommended to assess and compare the impact of the 
physical attributes of these two bone substitutes in animal studies, specifically in terms of 
osteopromotion levels, material absorption rates, replacement with new bone, and 
angiogenesis. 
 
Conclusion 
Based on the results of this study, it seems that the two samples of bone substitute originating 
from antler and bovine femur bone have similar physical structures. Both materials’ porosity, 
specific surface area, and density were almost identical. The bovine material displayed a 
limited range of particle sizes. On the other hand, the antler bone substitute particles exhibited 
a rougher surface texture that might enhance osteoblast adhesion. 
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Table 1. Porosity and specific surface area 

Type of bone 
substitute Porosity (%) Density 

)3(g/cm 

Specific 
surface area 

/g)2(m 

Total porosity 
volume 

/g)3(cm 

Mean hole 
diameter 

(nm) 
Antler 040 0.55 15.974 0.2172 54.377 

Bovine 43.5 0.67 18.404 0.2918 63.41 

 
 
 



 
Figure 1. Surface morphology of bone substitutes: Antler (a-e) and Bovine (f-j). Magnification: 

a and f (×50), b and g (×200), c and h (×500), d and h (×2,000), e and j (×10,000) 
 

 
Figure 2. Particle size distribution of the bone substitutes. 

 

 
Figure 3. BJH diagram. Antler (left) and bovine (right). 

 


